a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
MARK1(geq2(X1, X2)) -> A__GEQ2(X1, X2)
A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(false, X, Y) -> MARK1(Y)
MARK1(minus2(X1, X2)) -> A__MINUS2(X1, X2)
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__DIV2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MARK1(geq2(X1, X2)) -> A__GEQ2(X1, X2)
A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(false, X, Y) -> MARK1(Y)
MARK1(minus2(X1, X2)) -> A__MINUS2(X1, X2)
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__DIV2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__GEQ2(s1(X), s1(Y)) -> A__GEQ2(X, Y)
POL(A__GEQ2(x1, x2)) = 2·x1 + 2·x2
POL(s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__MINUS2(s1(X), s1(Y)) -> A__MINUS2(X, Y)
POL(A__MINUS2(x1, x2)) = 2·x1 + 2·x2
POL(s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
MARK1(s1(X)) -> MARK1(X)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(div2(X1, X2)) -> MARK1(X1)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(s1(X)) -> MARK1(X)
MARK1(div2(X1, X2)) -> MARK1(X1)
Used ordering: Polynomial interpretation [21]:
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
POL(0) = 1
POL(A__DIV2(x1, x2)) = 2 + 2·x1
POL(A__IF3(x1, x2, x3)) = 1 + x2 + x3
POL(MARK1(x1)) = 1 + x1
POL(a__div2(x1, x2)) = 1 + 2·x1
POL(a__geq2(x1, x2)) = 0
POL(a__if3(x1, x2, x3)) = x1 + x2 + x3
POL(a__minus2(x1, x2)) = x1
POL(div2(x1, x2)) = 1 + 2·x1
POL(false) = 0
POL(geq2(x1, x2)) = 0
POL(if3(x1, x2, x3)) = x1 + x2 + x3
POL(mark1(x1)) = x1
POL(minus2(x1, x2)) = x1
POL(s1(x1)) = 2 + 2·x1
POL(true) = 0
a__if3(true, X, Y) -> mark1(X)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
a__if3(false, X, Y) -> mark1(Y)
a__div2(X1, X2) -> div2(X1, X2)
mark1(true) -> true
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__geq2(X1, X2) -> geq2(X1, X2)
mark1(s1(X)) -> s1(mark1(X))
a__minus2(X1, X2) -> minus2(X1, X2)
a__minus2(0, Y) -> 0
mark1(0) -> 0
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
mark1(false) -> false
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
A__IF3(false, X, Y) -> MARK1(Y)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
A__IF3(true, X, Y) -> MARK1(X)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(if3(X1, X2, X3)) -> MARK1(X1)
A__DIV2(s1(X), s1(Y)) -> A__IF3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
MARK1(div2(X1, X2)) -> A__DIV2(mark1(X1), X2)
MARK1(if3(X1, X2, X3)) -> A__IF3(mark1(X1), X2, X3)
Used ordering: Polynomial interpretation [21]:
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
POL(0) = 1
POL(A__DIV2(x1, x2)) = 1 + 2·x1 + 2·x2
POL(A__IF3(x1, x2, x3)) = x2 + x3
POL(MARK1(x1)) = x1
POL(a__div2(x1, x2)) = 2 + 2·x1 + 2·x2
POL(a__geq2(x1, x2)) = 0
POL(a__if3(x1, x2, x3)) = 2 + x1 + x2 + 2·x3
POL(a__minus2(x1, x2)) = 2
POL(div2(x1, x2)) = 2 + 2·x1 + 2·x2
POL(false) = 0
POL(geq2(x1, x2)) = 0
POL(if3(x1, x2, x3)) = 2 + x1 + x2 + 2·x3
POL(mark1(x1)) = x1
POL(minus2(x1, x2)) = 2
POL(s1(x1)) = 2
POL(true) = 0
a__if3(true, X, Y) -> mark1(X)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
a__if3(false, X, Y) -> mark1(Y)
mark1(true) -> true
a__div2(X1, X2) -> div2(X1, X2)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)
a__geq2(X1, X2) -> geq2(X1, X2)
mark1(s1(X)) -> s1(mark1(X))
a__minus2(X1, X2) -> minus2(X1, X2)
a__minus2(0, Y) -> 0
mark1(0) -> 0
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
mark1(false) -> false
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__IF3(false, X, Y) -> MARK1(Y)
A__IF3(true, X, Y) -> MARK1(X)
a__minus2(0, Y) -> 0
a__minus2(s1(X), s1(Y)) -> a__minus2(X, Y)
a__geq2(X, 0) -> true
a__geq2(0, s1(Y)) -> false
a__geq2(s1(X), s1(Y)) -> a__geq2(X, Y)
a__div2(0, s1(Y)) -> 0
a__div2(s1(X), s1(Y)) -> a__if3(a__geq2(X, Y), s1(div2(minus2(X, Y), s1(Y))), 0)
a__if3(true, X, Y) -> mark1(X)
a__if3(false, X, Y) -> mark1(Y)
mark1(minus2(X1, X2)) -> a__minus2(X1, X2)
mark1(geq2(X1, X2)) -> a__geq2(X1, X2)
mark1(div2(X1, X2)) -> a__div2(mark1(X1), X2)
mark1(if3(X1, X2, X3)) -> a__if3(mark1(X1), X2, X3)
mark1(0) -> 0
mark1(s1(X)) -> s1(mark1(X))
mark1(true) -> true
mark1(false) -> false
a__minus2(X1, X2) -> minus2(X1, X2)
a__geq2(X1, X2) -> geq2(X1, X2)
a__div2(X1, X2) -> div2(X1, X2)
a__if3(X1, X2, X3) -> if3(X1, X2, X3)